Ground based remote sensing of greenhouse gases in Jinja, Uganda

Twitter: @DrNeilHumpage

By Dr Neil Humpage, University of Leicester, UK; email: nh58@le.ac.uk

From the 16th to 22nd of January 2020, Dr Neil Humpage (University of Leicester) visited Jinja, Uganda, to set up a Bruker EM27/SUN spectrometer which will make measurements of greenhouse gases in the atmosphere overhead during the coming months.

The partnership

The spectrometer deployment is the result of a partnership between the University of Leicester and the National Fisheries Resources Research Institute (NaFIRRI), who are hosting the spectrometer at their headquarters in Jinja. This partnership came about by way of contacts made in the Ugandan environmental science community by Dr Jenny Farmer, who was living near Jinja (as well as making in-situ measurements for the MOYA project) back when we were considering where we could locate our spectrometer for MOYA. She put me in touch with Dr William Okello, who turned out to be very keen on the idea of hosting our greenhouse gas monitoring equipment at NaFIRRI, and has been very supportive throughout the organisation and execution of this deployment.

A look inside the spectrometer enclosure (photo by Neil Humpage)

Figure 2: The NaFIRRI building upon whose roof we will monitor the composition of the air over Jinja (photo by Neil Humpage)

How does it work?

The spectrometer (Figure 1) works by observing light from the Sun, which it splits onto a fine wavelength grid to produce absorption spectra of the atmosphere at a rate of one every 75 seconds (whenever there are cloud-free conditions). By looking at the specific wavelengths where light is absorbed by the gases we are interested in (methane, carbon dioxide and carbon monoxide) and measuring how much light is absorbed at those wavelengths, we can estimate with a very good degree of accuracy the total column concentration of these gases in the air overhead. The instrument requires a flat surface with clear sightlines to the Sun throughout the day, along with access to a power supply: hence the need to lift everything onto the roof at NaFIRRI (Figure 2 to 6), using the crane on the back of a truck normally used for breakdown recovery!

Figure 3: Lifting the spectrometer and its enclosure on the roof at NaFIRRI (Photo by Neil Humpage)

 

Figure 4: Neil Humpage watches on as the enclosure and spectrometer are hoisted onto the roof (photo by William Okello)

Figure 5: Neil Humpage setting up the enclosure (photo by William Okello)

Figure 6: The spectrometer with its rain cover open, allowing observations of the Sun (photo by Neil Humpage)

Why use remote sensing?

There are several reasons why it is useful to remotely measure gaseous composition of the atmosphere in this way. Compared with directly taking air samples and analysing them to find out the mixture of gases present, this ground based remote sensing technique is sensitive to air originating from a wider range of sources than that of a single in-situ air sample. Whilst this throws up certain challenges when it comes to interpreting the data (understanding where the air you’re measuring has come from, and what sources of different gases it has passed over along the way), it does mean that the results are less susceptible to bias as a result of location – the air being measured is representative of the surrounding region (with the exact footprint we’re sensitive to being dependent on meteorology). This also means that the ground based, remotely sensed column concentrations we will measure particularly useful for studying regional sources and sinks, since the retrieved column data shows less sensitivity to local sources than that obtained from in-situ measurements.

Methane and Uganda

Of most relevance to the MOYA project are the measurements of methane, which we think will prove to be very interesting. One of the primary goals of MOYA is to understand the relative importance of the many different processes – both natural and anthropogenic – which are affecting the recent trends in global concentrations of atmospheric methane. Tropical wetlands are one of the most important natural sources of methane, which makes Uganda – where over 10% of its land surface is covered by wetlands – an excellent location for these measurements. In addition to our specific interest in methane, our capability to simultaneously measure carbon dioxide and carbon monoxide can give us a more general impression of Uganda’s greenhouse gas emissions from fossil fuel consumption, transport, and fires (see Figure 7 for an overview of what we hope to achieve in Uganda).

Figure 7: A schematic diagram showing some of the different greenhouse gas sources we expect to observe and investigate

A further motivation for making these measurements in Uganda is to provide a validation dataset for our colleagues working on global satellite observations of these gases. We rely on ground-based validation measurements to provide confidence in the quality of these global greenhouse gas datasets derived from satellites. The established ground-based spectrometer networks (e.g. the Total Column Carbon Observing Network, or TCCON) unfortunately do not include any locations on the continent of Africa (Figure 8). By temporarily filling this gap, the dataset we produce from our spectrometer measurements here in Jinja should prove to be of great value to the global greenhouse gas remote sensing community.

Figure 8: Locations of the TCCON ground-based measurements used to validate satellite data (see www.tccon.caltech.edu)

Whilst my visit to Jinja on this occasion was relatively brief (and unfortunately a bit too busy for much in the way of sightseeing!), I was made to feel very welcome by Dr Okello and his colleagues at NaFIRRI (Figures 9 to 10), whose efforts were instrumental in getting the spectrometer and its enclosure up on the roof and running successfully. I’m very much looking forward to visiting Jinja again soon, with plans in the pipeline for a seminar and further engagement with the scientists at NaFIRRI on where our respective interests – satellite and ground-based remote sensing, and biological processes in rivers and lakes – might overlap and generate ideas for further collaboration.

Figure 9: ‘Welcome to NaFIRRI’ – rowing boat on display at the NaFIRRI headquarters in Jinja (photo by Neil Humpage)

Figure 10: William Okello of NaFIRRI, helping to set up our weather station (photo by Neil Humpage)

‘Discover your inner cow’ travels to Bristols Festival of Nature

Members of the MOYA team, Aoife Grant, Alice Ramsden , Angharad Stell, Julianne Fernandez, Neil Humpage, Stephane Bauguitte and Rachel Tunnicliffe, took their research out to educate and inspire young people and adults at Bristol’s Festival of Nature recently. The Festival of Nature, a free outdoor Science Festival attracted a record 15,000 people on the 8th and 9th of June this year.

Our ‘Discover your inner cow’ exhibit and activities attracted hundreds of children and adults where they enjoyed building greenhouse gas molecules, making cow masks, exploring the MOYA information cow, growing our ideas tree and guessing which animals burp the most methane! We had loads of interest in our research and people queued up to play our quizzes and find out how they could reduce their methane emissions. It felt great to get out there and engage with the public, sharing our research and getting the public’s take on what we do.

MOYAs Neil Humpage (Leicester) and Stephane Bauguitte (FAAM), celebrating after a successful day of fun science at Bristol’s Festival of Nature, 2019

The Kafue Flats Experience

By Dave Lowry, Tim and Trish Broderick, Musa Lambakasa, James France, Stéphane Baugitte
Photos by Tim and Trish Broderick and Dave Lowry

The first ZWAMPS campaign consisted of both aircraft and ground surveys, these being linked most closely in the Kafue Flats region over the period Feb 2 to 5. The Kafue Flats are a floodplain wetland, extending from Itezhi-Tezhi Dam in the west, some 240 km east to Kafue town and never more than 50 km wide (https://en.wikipedia.org/wiki/Kafue_Flats). The river has changed course many times across its plain leaving scattered oxbow lakes and isolated snake-like sections of meanders to stagnate outside of flood season (Fig. 1).

Fig. 1 River Kafue lakes and meanders.

Fig. 1 River Kafue lakes and meanders.

The surveys and sampling commenced on Saturday with an intensive 4-hour zigzag flight over the region, designed by Keith Bower (Fig. 2), with elevated methane noted toward the eastern end near the start of the flight, before vertical mixing reduced these signals. The flight was very much enjoyed by Tim and our Zambian Ministry of Mines group, including Musa. Separating out the wetland source from the flight measurements and isotope data will be quite difficult because there were also numerous rural cattle herds and very extensive burning plumes producing methane (Fig. 3).

Fig. 2 End of the zig-zag flight

Fig. 2 End of the zig-zag flight

Fig. 3 Biomass burning plumes close to river

Fig. 3 Biomass burning plumes close to river

On Sunday we attempted to find our way by road to the northern margin of the Kafue Flats through the Blue Lagoon national park. After a 3-hour drive from Lusaka we reached a faded sign saying Nakeenda Lodge 9 km.  The national park sign was even more rusted. Soon we realised that this part of the park had not been visited for a long time as the track became more an overgrown and very muddy path, so we decided to sample air from a dambo in the pristine savanna (Fig. 4). The site was full of butterflies of numerous species, and even a praying mantis was catapulted into the car as we brushed past the luxuriant vegetation (Fig. 5).

Fig. 4 Stéphane directing air sampling

Fig. 4 Stéphane directing air sampling

Fig. 5 Mantis on water bottle

Fig. 5 Mantis on water bottle

Undeterred we decided to approach the park from the NW corner and reached a barrier. Here the head park ranger directed us to the managed game area and wetland.  After a few kilometres we turned off along a narrow track not on maps or GPS. Then followed 20 km over 90 minutes down a narrow and churned up track. As we passed across the invisible park boundary we came to a fishing camp on a rise above the floodplain and its associated biting insects. We were greeted by excited children and an ox cart (Fig. 6). Turns out that we were still some kilometres from the river, the resident lechwe antelope or the Game Ranger patrol camp. At this point we realised we had to get back to Lusaka before dark.

The return was no quicker, especially being interspersed with air sample collection in the pristine national park grassland (Fig. 7), as we carefully traced our way back along interweaving tracks using the GPS. We approached the outskirts of Lusaka as night fell, and on a road without lighting, carefully negotiated many minibuses without lighting and pedestrians bustling across the road to lively markets. Alarm bells had been ringing back at base when we failed to arrive back for the evening briefing and our Blue Lagoon destination was all that was known. As the city approached and phone reception returned we were able to let all know we had not broken down in the bush.

Fig. 6 Ox cart and children in the camp

Fig. 6 Ox cart and children in the camp

Fig. 7 Musa and Dave fishing for air

Fig. 7 Musa and Dave fishing for air

On Monday we had planned to sample on the south side of the floodplain, overnight in the Relax Hotel in Monze and then meet up with Mike Daly at the Lochinvar hot springs on Tuesday, but after breakfast Tim noticed that the Ford had a rear puncture from our toils the previous day, which fortunately hadn’t materialised on the evening drive back. Tim headed off hoping for a quick fix, but a brake fluid leak was also discovered from a distorted and corroded seal. Many discussions and calls later a replacement vehicle was delivered at 6 in the evening.

Plans quickly changed and the proposed rendezvous with Mike was scrapped due to the long distance, and the focus for Tuesday was to get into the sugar cane plantations and wetlands near Mazabuka. All was fine until about 2 hours into the drive when, on probably the steepest hill climb on the Kafue-Livingstone main road, there was a load bang from the rear of the vehicle. This time a major blow out and a 3 cm long rip in the tyre. Tim and Musa got to work on the jack while we jammed the other wheels with some lovely roadside calc-silicate boulders. Convoys of lorries heading for Botswana and South Africa laden with copper and other goods struggled past us. It soon became apparent that the supplied jack was not high enough for our Landcruiser, but we managed to flag down a local farmer and get the change done.

That’s when we noticed a 1cm diameter, perfectly round hole through the alloy wheel below the rip in the tyre, with a very clear entry and exit direction from a high velocity impact (Figs. 8 and 9). None of us had seen anything like that before and we still don’t know the cause, so we will leave this to your imagination.

Fig. 8 Hole in the alloy wheel – inside view

Fig. 8 Hole in the alloy wheel – inside view

Fig. 9 Hole in the alloy wheel – outside view

Fig. 9 Hole in the alloy wheel – outside view

At Mazabuka we found a tyre repairperson and then followed a wild goose chase to find a welder, then through sugar cane plantations to a market for electrodes, which then didn’t work because the alloy was wrong and required a DC current. After 2 more lost hours, we had a reality check, dumped the wheel and tyre into the back and decided to risk it on the spare and take the 30 km of dirt tracks NE toward the wetlands and river. With co-ordination of aerial images and GPS we headed down a narrow track and finally came to lush vegetation, reed beds (bulrushes) and clusters of water lilies, before the track stopped abruptly in a small clearing populated by a group of fisher folk. We proceeded to collect air samples from different heights in the reed beds. In the midst of this the reeds seemed to part and a small canoe cruised into the bank laden with good-sized Kafue bream (Figs. 10 and 11).

Fig. 10 Boatmen in the reed beds

Fig. 10 Boatmen in the reed beds

Fig. 11 Cargo of Kafue bream

Fig. 11 Cargo of Kafue bream

The drive back was far less eventful. The next morning the car hire people inspected the wheel and seemed overly keen to give us our deposit back and get us on our way. We can certainly look back on a couple of eventful and somewhat surreal days that we won’t forget in a hurry and hope that the few highly prized air samples were well worth our efforts to collect them.

Papyrus: a methane emitter and natural wind vane

The papyrus swamp measurements team
Tue 22 January 2019
Part 1

Having planned out the next few days flights – to lakes/wetlands as well as fires – and with no point refining the plans based on the weather forecast because we don’t know exactly when we will be able to start flying, I’ve joined Rebecca again to do some air sampling. This time with intent, and with a full rucksack containing anything I might need (unlike yesterday).

We are currently in a taxi out to see a contact, Steve Forsyth, who works at Mission Aviation Fellowship – Uganda, and is based at an airfield by a papyrus swamp. MAF is an organisation that operates small aircraft to transport refugees from nearby countries like the Democratic Republic of Congo or Sudan. The swamp will be a source of methane and so will be a good opportunity to work out the carbon-13 fingerprint of such an ecosystem. The principal investigator of this project, Euan Nisbet, has sampled here before, so it will be good to find out whether the fraction of carbon-13 varies over time or is very consistent.

Getting out of the conference room is a good chance to stop obsessing over ever evolving weather forecasts and see some of Uganda. And I can make myself useful by taking photos of the sampling location at very least.

Part 2

We are on the way back from the airfield now. It was completely surrounded by papyrus swamp, which meant we could access it quite easily. We were escorted around the airfield by Ivan, who was essential in helping us not get our feet wet (we were not keen to lose a trainer in the swamp!) while getting as close to the swamp as possible.

The papyrus plants were extremely tall in places – close to 4m probably. Some areas were cut down to the stem, and they grow back in about a month according to Ivan. The stems themselves are very strong, and are excellent wind vanes of you ever are in need of one. Which I did, as I was taking wind measurements to accompany the air samples.

In all, we took 13 samples from locations close to the surface of the water up to about 2m high, all around the edge of the swamp, plus one background sample further away from it. This will allow us to find out the carbon-13 fingerprint of this papyrus swamp, where there were the highest methane concentrations. For example, the papyrus that was cut down to ground level may emit more or less methane than the fully grown area and maybe the measurements will give us an indication of that.

 

Large methane emissions from Amazonian floodplain trees

Blog Author: Emanuel Gloor, University of Leeds

A recent study led by Sunitha Pangala presented the discovery and showed the importance of a previously unknown conduit of methane from floodplains to the atmosphere in the Amazon. The conduit are trees. To demonstrate the importance of this conduit two approaches have been pursued. On the one hand methane flux from tree stems has been measured in floodplain trees of many river stems of the Amazon and for a large number of trees. This data was up-scaled using area estimates of seasonally flooded floodplains.

Sampling set-up for methane from tree stems. Photo Credit: Sunitha Panagala

Setting up of methane tree sampling equipment. Photo credit: Sunitha Pangala

Aircraft were used to regularly (bi-weekly) take vertical profile samples of the lower troposphere methane concentration field. These data together with a back-trajectory based atmospheric inverse transport model were used to estimate the total Amazon basin methane balance. This tropospheric methane sampling program is being led by Luciana Gatti at INPE in Sao Jose dos Campos, Brazil.

While there is disagreement between upscaling of previously known methane flux processes and the aircraft based methane balance, inclusion of the discovered additional flux path leads to good agreement between the two approaches. The discovery of the tree conduit is important because the Amazon contributes a substantial fraction of methane emissions from wetlands globally. This contribution is approximately 8-10% of all contemporary methane emissions to the atmosphere.

Besides Sunitha Pangala and Luciana Gatti, scientists from several other institutions were involved in the study including from the Open University, NOAA, ESRL and University of Leeds.

The full article is available here:

Large emissions from floodplain trees close the Amazon methane budget, Sunitha R. Pangala, Alex Enrich-Prast, Luana S. Basso, Roberta Bittencourt Peixoto, David Bastviken, Edward Hornibrook, Luciana V. Gatti, Humberto Marotta Ribeiro, Wanderley Rodrigues Bastos, Olaf Malm, Emanuel Gloor, John Miller, Vincent Gauci (2017) Nature, 552, 230–234, doi:10.

Welcome to the MOYA blog

Hello and welcome! Here, the MOYA team will publish blogs about the project. Next up will be our first in depth introduction to the project, by the project’s principal investigator, Professor Euan Nisbet.

Find out more about the project by using the menu at the top of the page.